

SR-DLS Fundamentals and NanoFlowSizer Applications: Towards Automated Size-Based Process Control.

**Dr. Albert GRAU-
CARBONELL**
(InProcess-LSP / NL)

30th January 2026
11:00 – 11:45 AM (CEST)

For registration, please complete the form available at this [link](#)

TOPIC / ABSTRACT

Size is a critical quality attribute for many nanoparticle and biotherapeutic formulations, yet routine measurement is often slow, manual, and poorly suited to real time decision making. This webinar introduces the fundamentals of nanoparticle size and size distribution analysis by SR-DLS (Spatially Resolved Dynamic Light Scattering), explaining how it differs from conventional DLS. We will cover the core measurement principle, key outputs (including Z-average, Particle Size Distributions and indicators of polydispersity), and practical considerations such as concentration windows, compatible flow rates and process integration.

Building on these basics, the session will present typical use cases enabled by the NanoFlowSizer, from rapid at-line screening to fully integrated in-line process control. We will also discuss how automated workflows reduce operator variability and increase throughput, enabling consistent trend tracking across development and manufacturing.

Finally, the webinar will highlight how integrating size monitoring into automated process control can transform quality management: continuous or at line measurements can detect drift early, trigger feedback or feedforward actions, and support closed loop control strategies. Attendees will leave with a clear understanding of when SR-DLS is the right tool, how the NanoFlowSizer is applied in practice, and how nanoparticle size data can be converted into actionable control signals for more reliable, scalable processes.

InProcess-LSP is distributed in France by PAT-Industry, a member of NanoMesureFrance.

[Web-site](#)

[LinkedIn](#)